

AQA Chemistry A-level

3.2.3: Group 7 - The Halogens Detailed Notes

This work by PMT Education is licensed under CC BY-NC-ND 4.0

3.2.3.1 - Trends in Properties

The group 7 elements are **highly reactive non-metals** that need to gain an electron to form a **1- ion** and achieve a full outer shell of electrons.

Atomic Radius

The atomic radius of group 7 elements **increases down the group** due to additional electron shells.

Reactivity

The group 7 elements need to gain an electron. As atomic radius increases this becomes harder as the positive attraction of the nucleus is weakened by additional **shielding**. Therefore it is harder to attract an electron so **reactivity decreases** down the group.

Ionisation Energy

The first ionisation energy of group 7 elements **decreases down the group** due to a greater atomic radius and increased amounts of shielding.

Boiling Point

The group 7 elements are **simple covalent molecules** held together with **van der waals** forces. The strength of these intermolecular forces increases as the Ar of the molecule increases. Therefore the strength of the van der waals forces **increases down the group** meaning more energy is required to overcome them, resulting in a higher boiling point. Fluorine is a gas at room temperature whereas iodine is a solid.

Oxidising Power

The halogens act a **good oxidising agents** as they accept electrons from the species being oxidised and are reduced. This oxidising power **decreases down the group** as their ability to

attract electrons decreases due to shielding and a greater atomic radius. The relative oxidising strengths mean a halogen will **displace any halide beneath it** in the Periodic Table.

Example:

Cl₂ will displace Br⁻ and l⁻ ions.

Br₂ will displace I⁻ ions

l₂ won't displace any halide ions.

Halide lons

The negative ions of halogens are known as **halide ions**. These ions are **good reducing agents** as they donate electrons to the species being reduced and are themselves oxidised. This reducing power **increases down the group** as electrons are easier to lose from larger ions due to shielding and a larger atomic radius.

These redox reactions with H_2SO_4 have to be known:

1. Fluoride and Chloride ions.

NaF +
$$H_2SO_4 \longrightarrow NaHSO_4 + HF$$

NaCl + $H_2SO_4 \longrightarrow NaHSO_4 + HCl$

2. Bromide ions.

NaBr +
$$H_2SO_4 \longrightarrow NaHSO_4 + HBr$$

2HBr + $H_2SO_4 \longrightarrow Br_2 + SO_2 + 2H_2O$

3. lodide ions.

Nal +
$$H_2SO_4 \longrightarrow NaHSO_4 + HI$$

 $2HI + H_2SO_4 \longrightarrow I_2 + SO_2 + 2H_2O$
 $6HI + SO_2 \longrightarrow H_2S + 3I_2 + 2H_2O$

The greater the reducing power, the longer the reaction as the halide is powerful enough to reduce more species.

▶@()○PMTEducation

Silver Nitrate

Acidified silver nitrate is used to **test for halide ions** as it reacts to form different **coloured precipitates** depending on the ion present. The precipitates formed may not be clear to distinguish so they can be tested further using **ammonia**.

	CI [.]	Br	ŀ
+ AgNO ₃	White precipitate (AgCl)	Cream precipitate (AgBr)	Yellow Precipitate (AgI)
+ dilute NH ₃	Precipitate dissolves	No Change	No Change
+ conc. NH ₃	Precipitate dissolves	Precipitate dissolves	No Change

3.2.3.2 - Chlorine and Chlorate(I) ions

Chlorine reacts with cold water to produce Chlorate(I) ions (CIO⁻) and chloride ions.

Example:

$$Cl_2 + H_2O \longrightarrow ClO^- + Cl^- + 2H^+$$

This is a **disproportionation reaction** as the chlorine is both oxidised and reduced. The oxidation state goes from zero to both **+1** and **-1**.

In the presence of **UV light**, chlorine decomposes water to produce **oxygen and hydrochloric acid**. The chlorine is reduced in this reaction. *Example:*

$$2Cl_2 + 2H_2O \longrightarrow 4HCl + O_2$$

Chlorine is used in small quantities to kill bacteria in water treatment processes. This poses some risks as chlorine can be toxic; however the benefits of clean, treated water outweigh the risks.

▶ Image: PMTEducation

Bleach Production

Chlorine can be mixed with **cold**, **aqueous sodium hydroxide** to produce **sodium hypochlorite**. This is a key ingredient in the production of bleach.

Example:

2NaOH + Cl_2 \longrightarrow NaClO + NaCl + H_2O

Tests for ions

You need to know how to test for certain anions and cations for your required practical.

Anions - Halides

These are tested for using acidified **silver nitrate and ammonia**. The silver nitrate is acidified so that any other impurities that could form a precipitate are removed.

	CI	Br	ŀ
+ AgNO ₃	White precipitate (AgCl)	Cream precipitate (AgBr)	Yellow Precipitate (AgI)
+ dilute NH ₃	Precipitate dissolves	No Change	No Change
+ conc. NH ₃	Precipitate dissolves	Precipitate dissolves	No Change

Anions - Sulfate (SO₄²⁻)

These are tested for using **BaCl**₂ which reacts to form a white precipitate.

Anions - Hydroxide (OH⁻)

These ions indicate that the substance is alkaline. Therefore they can be identified with **red litmus, which turns blue** or using universal indicator, which turns blue-purple.

Anions - Carbonate (CO₃²⁻)

When an acid such as HCl is added, the substance containing the carbonate ions will fizz (effervescence) and CO_2 gas is given off. This gas can be collected and bubbled through limewater which will turn cloudy, confirming it as carbon dioxide.

Cations - Group 2

The group 2 ions can be identified with a series of **flame tests**.

Calcium (Ca ²⁺)	Brick red	
Strontium (Sr ²⁺)	Red	
Barium (Ba ²⁺)	Pale green	

Cations - Ammonium (NH₄⁺)

If ammonium ions are present, ammonia gas is given off, which is a base. Therefore the presence of ammonium ions can be tested by holding **red litmus** over a petri dish of the substance being tested. It will **turn blue** if ammonium ions are present.

Alternatively, they can be tested for in the same way but by **adding NaOH** to produce the ammonia gas faster.

